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Abstract

We introduce a new Gauss–Codazzi framework for null hypersurfaces in the space–time. First,
with the use of space–time splitting techniques, and working within the framework of general
coordinates of the ambient space–time, we generalize the second fundamental form and the Ricci
and Gauss–Codazzi formulae of a non-null hypersurfaceΣ to a neighbourhood of it. Then in a
similar way we introduce a second fundamental form analogue for the null hypersurface case, and
deduce the corresponding Ricci and Gauss–Codazzi formulae.
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1. Introduction

The traditional Gauss–Codazzi formalism belongs to the framework of the parametric
equations of a non-null hypersurfaceΣ . It describes the differential geometry induced by
the ambient space–time, in terms of the second fundamental form (extrinsic curvature) of
Σ , by means of the inner Ricci formula and the Gauss–Codazzi identities. Clearly, such an
approach cannot be directly applied to null hypersurfaces, since the induced metric is in
this case degenerate, and the usual induced Levi-Civita connection is undefined.
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In this paper, we construct an extrinsic curvature analogue for null hypersurfaces, and
deduce the corresponding Ricci formula and Gauss–Codazzi identities. The framework is
that of generic ambient coordinates, of the Cartesian equation of the hypersurface and of
space–time splitting.

First, as a preliminary problem, we extend the usual second fundamental form of a
non-null hypersurface to a neighbourhood ofΣ by a method of projection and study the
corresponding generalizations of the Ricci and Gauss–Codazzi formulae.

Then we consider a similar procedure for a null hypersurface, with the help of the
“transverse” double projection relative to a reference frame; this leads to an observer-
dependent definition of second fundamental form analogue, and to the corresponding
Ricci and Gauss–Codazzi formulae, which do not have a traditional counter-
part.

Examples of mathematical theories of characteristic hypersurfaces which have a Gauss–
Codazzi analogue can be found in the literature. Replacements for the Levi-Civita connec-
tion onΣ can be defined directly (see, e.g.[6,14–17,30,32]), or be induced by the so-called
screen-distribution, i.e. an arbitrary completion of the parabolic-degenerate tangent space
of Σ (see, e.g.[2,8] and the more concise[11]).

Be they “natural” or not, such extensions involve arbitrary auxiliary geometric structures;
so it is clear that there is no a unique way for extending the Gauss–Codazzi formalism to
the null case. So, why to bother for introducing a new one? We are mainly motivated by
two reasons.

First, in the cited literature attention is focused on the parametric equations of the hyper-
surface, and inner coordinates and holonomic 3-basis are used. This (perfectly legitimate)
point of view is not always the most convenient; some applications in fact may be more
naturally cast in the framework of ambient space–time, i.e. with the use of the Cartesian
equation of the hypersurface and of general ambient coordinates. In this case “translation”
in terms of extrinsic curvature and 3-parameters may not be a trivial nor a natural thing to
do; this is the reason for constructing a theory which completely lies in the framework of
ambient space–time.

Second, we mean to introduce the observer’s point of view, making use of the space–time
splitting with respect to a generic reference frame, to show that non-uniqueness in the null
hypersurface extension of the Gauss–Codazzi framework in principle can be interpreted
in terms of different physical measures relative to different observers. This interpretation
can be very useful for subsequent application to physical evolution problems of general
relativity involving null hypersurfaces, as it will be showed elsewhere.

In fact, the space–time splitting method allows one to disentangle the Gauss–Codazzi
formalism from the 3-parameters framework, focusing on the Cartesian equation of the
hypersurface and using general coordinates of the ambient space–time. With this method
it is possible to replace the traditional second fundamental form of a non-characteristic
hypersurface with a more general field, which has support on a whole neighbourhood of the
hypersurface, and is defined (uniquely) in a geometrical way. Besides the generalization,
we then are led in a natural way to the definition of a complete Gauss–Codazzi formalism
also for the characteristic case. In this case the same operational role which is elsewhere
played, for example, by a screen-distribution, is here played by a reference frame (i.e. an
auxiliary congruence of time-like lines), thus automatically giving some physical meaning,



G. Gemelli / Journal of Geometry and Physics 43 (2002) 371–383 373

in terms of the observer’s acceleration, deformation and vorticity, to the frame-dependent
geometrical objects which are introduced. Here non-uniqueness is the reflection of different
measurements made by different observers, but we have formal invariance with respect to
the choice of the reference frame. The generic reference frame can then be specialized in
order for additional properties to hold.

The present approach is rather simple, and completely lies in the framework of local
differential geometry and tensor algebra (see[22] for a Newmann–Penrose spin-coefficients
formulation of the null hypersurface Gauss–Codazzi analogue).

The geometry of three-dimensional hypersurfaces in space–time is involved in a number
of fundamental physical problems in general relativity.

For example space-like hypersurfaces (i.e. with a time-like normal vector) are the non-
characteristic manifolds of the Cauchy problem for the Einstein gravitational equations; here
the standard method for encoding initial data requires the extrinsic curvature formalism (see,
e.g.[7, pp. 143 and 152; 23, pp. 509–518]).

Time-like and light-like hypersurfaces (i.e. with a space-like and a light-like normal
vector, respectively), on the other hand, play the fundamental role of space–time inter-
faces. In general relativity in fact an important problem is that of the continuous (but
not C1) match of two solutions of the Einstein equations across a discontinuity hyper-
surface; classic applications are for example: (1) the study of the propagation of grav-
itational shock waves[3,5,9,18,19], (2) the study of the evolution of a thin shell of
matter[1,4,12,20,27–29], (3) the modelling of gravitational collapse[26,31]. The most
used theory of discontinuity hypersurfaces was formulated in its actual form by Israel
[12], Mansouri and Khorrami[21] and Papapetrou and Hamoui[27], and is again based
on the parametric equations of the hypersurface and on the Gauss–Codazzi formalism.
Clearly, such theory finds its natural application in case the hypersurface is time-like
(see, e.g.[24,29,31]). A method ad hoc for handling the characteristic (i.e. light-like)
situation was introduced by Barrabes and Israel[1] (see also[25]), but the traditional
Gauss–Codazzi formulae are still missing with this method. Nevertheless, it is possible to
apply our formalism to this problem, thus recovering the traditional features also in the
null case. For the sake of brevity, however, here we limit to regular metrics; application
of our extension of the Gauss–Codazzi formalism to the problem of gravitational discon-
tinuity hypersurfaces, and a detailed study of Barrabes and Israel theory, will be discussed
elsewhere.

This paper is organized as follows. InSection 2, definitions are stated and the concept
of reference frame is briefly introduced. InSection 3, the case of non-null hypersurfaces
is studied. The orthogonal splitting of the ambient space–time, with respect to the unit
normal vector field, is considered. The generalized second fundamental form of a time-like
hypersurface is introduced; for a space-like hypersurface this is replaced by the deformation
tensor of the normal reference frame. In both cases the corresponding generalized Ricci
and Gauss–Codazzi formulae are proved. InSection 4the case of a null hypersurface is
studied. The transverse-splitting, relative to a reference frame, is considered. The transverse
second fundamental form analogue, which is observer-dependent, but formally invariant
with respect to the choice of the reference frame, is defined; the corresponding Ricci and
Gauss–Codazzi formulae are deduced. Relation with the method of screen-distributions is
then briefly considered.
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2. Reference frames

Let V4 be an oriented differentiable manifold of dimension 4, classC3, provided with
a strictly hyperbolic metric of signature− + ++ and classC2. Let ηαβγ δ denote the unit
volume 4-form and∇ the covariant derivative. LetΩ ⊂ V4 be an open connected subset
with compact closure. Let units be chosen in order to have the speed of light in empty space
c ≡ 1. Greek indices run from 0 to 3; Latin indices run from 1 to 3.

The Riemann curvature tensorR is defined by the Ricci formula:

(∇β∇α − ∇α∇β)V
σ = Rαβρ

σV ρ. (1)

Let Σ ⊂ Ω be a regular hypersurface of equationf (x) = 0. Letf ∈ C3(Ω). Finally, let
�α ≡ ∂αf denote the gradient off .

Let uα be a time-like unit vector field of classC2(Ω); we call such a field a reference
frame, or an observer. The corresponding three-dimensional spatial metric ish(u)αβ =
gαβ +uαuβ . The fieldsu andh(u) define locally a 1+3 splitting of the space–time inΩ. In
the following the suffix “(u)” will be consistently used to denote spatial fields with respect
to u, i.e. fields normal tou; such fields are also said to belong to the so-called local rest
space ofu [13].

The covariant derivative ofu can be uniquely decomposed in the following way
[10,13]:

∇αuβ = η(u)αβ
µω(u)µ + Θ(u)αβ − uαa(u)β, (2)

whereη(u) is the spatial unit volume 3-form,ω(u) the vorticity vector,Θ(u) the expansion
(symmetric) tensor anda(u) the acceleration vector. We have

η(u)αβρ = ησαβρu
σ , (3)

ω(u)α = 1
2η(u)

αµν∇µuν, (4)

Θ(u)αβ = h(u)(α
νh(u)β)

µ∇νuµ, (5)

a(u)α = uν∇νu
α. (6)

A reference frameu is said to be normal if we haveω(u) = 0. In this case the corresponding
time-like congruence is integrable.

3. Non-null hypersurfaces

In the neighbourhood of a non-null hypersurface it is easy to split the space–time into the
sum of the normal space (i.e. collinear with the normal vector, be it space-like or time-like)
and the “tangent” space (i.e. orthogonal to the normal vector). The interesting point is
that the tangent projection of the covariant gradient of the unit normal vector field is a
generalization of the extrinsic curvature, as we are going to see.
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3.1. Time-like hypersurfaces

Suppose(� · �) > 0 (Σ time-like). We define the space-like unit normal vectorNα = (� ·
�)−(1/2)�α and the corresponding three-dimensional tangent metrich(N)αβ = gαβ−NαNβ .
Such vector field and metric field actually define a 1+ 3 splitting of the space–time in the
wholeΩ, where in particularh(N) is tangent to the family of hypersurfaces of equation
f = const. andN the unit tangent of the corresponding integrable congruence of space-like
curves. In the following the suffix “(N)” will be consistently used to denote tangent fields,
i.e. fields normal toN .

Let us define the inner covariant derivative operator∇(N) of a generic tangent tensor
by projection onΣ ; for example ifV (N) is a generic vector andW(N) a generic 2-tensor
tangent toΣ , we have

∇(N)αV (N)β = h(N)α
νh(N)β

µ∇νV (N)µ, (7)

∇(N)αW(N)βρ = h(N)α
νh(N)β

µh(N)ρ
σ∇νW(N)µσ , (8)

and similarly for tangent tensors of higher rank. Then consider the following tensor field:

K(N)αβ = +h(N)α
νh(N)β

µ∇νNµ = −h(N)α
νh(N)β

µNρ∇νh(N)µρ, (9)

K(N)αβ is symmetric and regularly discontinuous onΣ . We have

∇αNβ = K(N)αβ + Nα∇NNβ, (10)

where∇NNβ = Nν∇νNβ .
On each side ofΣ , K(N) is a regular extension of the second fundamental form of the

hypersurface. To see it, supposeΣ is described by three parametersξ i (i = 1,2,3) such
that the parametric equations of the hypersurface are in the following form:

xα = xα(ξ1, ξ2, ξ3), (11)

wherexα areC1 functions ofξ i . If ei is the corresponding 3-basis onΣ , i.e. (ei)α =
∂xα/∂ξ i , then the usual second fundamental form ofΣ is defined by

Kij = ei
∂N

∂ξj
, (12)

and one finds out

Kij = ∂xν

∂ξ i

∂xµ

∂ξj
∇νNµ. (13)

One can consider an extension outsideΣ of the setξ i of coordinates (see, e.g.[27]), by
letting, for examplexi = ξ i andx0 = f , wheref = 0 is the equation ofΣ . With such
regular coordinates one hasNα = (� ·�)−1/2δα

0 and(ei)α = δαi = h(N)αi . In such a chart
therefore∇(N)j corresponds to the ordinary inner covariant derivative along the directions
of ξj , i.e. the projection of the ambient Levi-Civita connection coincides onΣ with the
induced connection. Similarly, from(9) we see that the 3-parameters component ofK(N)

is equal onΣ to the usual second fundamental form. ButK(N) is defined by projection, in a
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general and geometrical way which is invariant with respect to the ambient coordinates (and
with respect to the parameters). For this reason in the following, we will actually replace
the traditional second fundamental form ofΣ with the extended fieldK(N) defined above,
and we will use general coordinates.

It is fundamental to note that theGauss–Codazziframework can be generalized to a
neighbourhood ofΣ and to the extended field(9). We have in fact the following theorem.

Theorem 1. Consider a vector fieldV (N) tangent toΣ (i.e. (V · N) = 0); we have the
following tangent Ricci formula:

2∇(N)[β∇(N)α]V (N)σ = (RΣ)αβρ
σV (N)ρ (14)

with RΣ given by the following first Gauss–Codazzi identity:

(RΣ)αβρ
σ = R(N)αβρ

σ + K(N)β
σK(N)αρ − K(N)α

σK(N)βρ, (15)

whereR(N) is the tangent projection of R: R(N)αβρ
σ = h(N)α

νh(N)β
µh(N)ρ

λh(N)γσ

Rνµλγ . Moreover, we have the following second Gauss–Codazzi identity:

h(N)α
νh(N)β

µh(N)σ
γNρRνµργ = 2∇(N)[βK(N)α]σ . (16)

Proof. Consider the following identity:

∇β∇αV (N)σ = ∇β{(h(N)α
ν + NαN

ν)(h(N)σµ + NσNµ)∇νV (N)µ}. (17)

The completely tangent component (i.e. all indices projected by means of the tangent met-
ric h(N)) of the left-hand side ish(N)β

νh(N)α
µh(N)σµ∇ν∇µV (N)λ, while that of the

second-hand side turns out to be

∇(N)β∇(N)αV (N)σ+K(N)βαN
νh(N)σµ∇νVµ−K(N)β

σK(N)αµV (N)µ. (18)

Then, by anti-symmetrization, and from the ordinary space–time Ricci formula(1), we have
(15), as wished. As for(16), again from(1) we have

1
2RαβρσN

ρ = ∇[β∇α]Nσ = ∇[β(∇(N)α]Nσ + Nα]N
ν∇νNσ )

= ∇[βK(N)α]σ + ∇[βNα]N
ν∇νNσ

+N[α∇β]N
ν∇νNσ + N[αN

ν∇β]∇νNσ , (19)

the completely tangent component of the last term is∇(N)[βK(N)α]σ , which leads to(16).
Thus our proof is completed. �

3.2. Space-like hypersurfaces

In the space-like situation the role of extrinsic curvature is actually played by the defor-
mation tensor of the normal reference frame, as we are going to see. This case was studied
along similar lines in[7, pp. 143 and 252](see also[23, pp. 517–518]), with a different
notation.

Suppose(� · �) < 0 (Σ space-like). We define the time-like unit normal vectorUα =
[−(� ·�)]−(1/2)�α; the corresponding three-dimensional spatial tangent metric ish(U)αβ =
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gαβ + UαUβ . We callU the normal reference frame of the hypersurface. Such vector field
and metric field actually define a 1+ 3 splitting of the space–time in the wholeΩ, where
in particular,h(U) is tangent to the family of hypersurfaces of equationf = const. andU
is the unit tangent of the corresponding integrable congruence of time-like curves.

Let us define the inner covariant derivative operator∇(U) of a generic tangent tensor
by projection onΣ ; for example ifV (U) is a generic vector andW(U) a generic 2-tensor
tangent toΣ we have

∇(U)αV (U)β = h(U)α
νh(U)β

µ∇νV (U)µ, (20)

∇(U)αW(U)βρ = h(U)α
νh(U)β

µh(U)ρ
σ∇νW(U)µσ , (21)

and similarly for tangent tensors of higher rank.
SinceU is a normal reference frame from(2) we have the following decomposition:

∇αUβ = Θ(U)αβ − Uαa(U)β. (22)

We have the following theorem.

Theorem 2. Consider a vector fieldV (U) tangent toΣ (i.e. (V · U) = 0); we have the
following tangent Ricci formula:

2∇(U)[β∇(U)α]V (U)σ = (RΣ)αβρ
σV (U)ρ (23)

with RΣ given by the following first Gauss–Codazzi identity:

(RΣ)αβρ
σ = R(U)αβρ

σ − Θ(U)β
σΘ(U)αρ + Θ(U)α

σΘ(U)βρ, (24)

whereR(U) is the spatial projection of R: R(U)αβρ
σ = h(U)α

νh(U)β
µh(U)ρ

λh(U)γσ

Rνµλγ . Moreover, we have the following second Gauss–Codazzi identity:

h(U)α
νh(U)β

µh(U)σ
γ UρRνµργ = 2∇(U)[βΘ(U)α]σ . (25)

Proof. Consider the following identity:

∇β∇αV (U)σ = ∇β{(h(U)α
ν − UαU

ν)(h(U)σµ − UσUµ)∇νV (U)µ}. (26)

The completely tangent component (i.e. all indices projected by means of the tangent met-
ric h(U)) of the left-hand side is:h(U)β

νh(U)α
µh(U)σµ∇ν∇µV (U)λ, while that of the

second-hand side turns out to be

∇(U)β∇(U)αV (U)σ − Θ(U)βαN
νh(U)σµ∇νVµ + Θ(U)β

σΘ(U)αµV (N)µ. (27)

Then, by anti-symmetrization, and from the ordinary space–time Ricci formula(1), we have
(24), as wished. As for(25), again from(1) we have

1
2RαβρσU

ρ = ∇[β∇α]Uσ = ∇[β(Θα]σ − Uα]a(U)σ )

= ∇[βΘ(U)α]σ − ∇[βUα]a(U)σ + U[α∇β]a(U)σ , (28)

the completely tangent component of the last term is∇(U)[βΘ(U)α]σ , which leads to(25).
Thus our proof is completed. �
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Note that forRΣ , with a slight abuse of notation, we have used the same symbol of the
time-like case.

4. Null hypersurfaces

In the neighbourhood of a null hypersurface the space of normal-orthogonal vectors is not
a complement of the tangent space. Nevertheless, the problem of splitting the space–time
can be solved by introducing an arbitrary time-like congruence (reference frame), which
permits us, as we are going to see, to define a relative two-dimensional tangent space, which
we name transverse for the sake of brevity.

Suppose(� · �) = 0. Letuα be a reference frame; we can write the following decompo-
sition:

�α = −(u · �)Lα, Lα = uα + n(u)α. (29)

In particular, we do not require the gradient vector to be normalized, i.e.(u·�) to be constant.
The null vectorL is determined by the couple�, u, so a more precise notation should be
L�,u, however, for the sake of brevity we avoid such notation in the following. For the spatial
vectorn(u), we haven(u)α = h(u)αβLβ . In the following, however, again for the sake of
brevity, we will drop the suffix(u) and simply denote this vector byn.

Now let us introduce the transverse metrich(u, n)αβ , orthogonal to bothu andn (and
therefore also to�), defined as follows:

h(u, n)αβ = h(u)αβ − nαnβ = gαβ + uαuβ − nαnβ = gαβ + Lαuβ − nαLβ. (30)

We thus have inΩ a “1+1+2” splitting of the space–time, generated byu, n, andh(u, n).
In the following, the suffix “(u, n)” will be consistently used to denote transverse fields, i.e.
fields which are normal to bothu andn.

Consider for a moment a couple of transverse unit vectorsa(u, n), b(u, n) forming a
spatial orthonormal basis together withn(u); any transverse tensor field has non-vanishing
components along the various possible tensor products ofa andb only. For example, we
have

h(u, ν)αβ = a(u, ν)αa(u, ν)β + b(u, ν)αb(u, ν)β, (31)

η(u, ν)αβ = a(u, ν)αb(u, ν)β − b(u, ν)αa(u, ν)β. (32)

The further splitting ofη(u) alongn and the transverse 2-space relative tou andn is the
following:

η(u)αβρ = 2n[αη(u, n)β]ρ + nρη(u, n)αβ, (33)

where the transverse componentη(u, n)αβ = η(u)σαβn
σ is such that

η(u, n)λµη(u, n)σν = 2h(u, n)σ [λh(u, n)µ]ν . (34)

The splitting ofω(u), Θ(u) anda(u) in turn gives rise in a natural way to the following
transverse fields:

Ω(u, n)α = η(u, n)ασω(u)σ , (35)
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Θ(u, n)αβ = h(u, n)α
νh(u, n)β

µΘ(u)νµ, (36)

Ku(u, n)αβ = h(u, n)α
νh(u, n)β

µ∇νuµ = Θ(u, n)αβ + (ω(u) · n)η(u, n)αβ, (37)

Θ(u, n)α = nνh(u, n)α
µΘ(u)νµ, (38)

Θ(u, n) = nνnµΘ(u)νµ, (39)

a(u, n)α = h(u, n)α
νa(u)ν, (40)

which are such that

∇αuβ =Ku(u, n)αβ + (Θ(u, n)α − Ω(u, n)α)nβ + (Θ(u, n)β + Ω(u, n)β)nα

− a(u, n)βuα − (a(u) · n)uαnβ + Θ(u, n)nαnβ. (41)

The splitting of∇αnβ , as a consequence of the symmetry of∇α�β , from (29) turns out to
give rise to two further transverse fields only, i.e.

Kn(u, n)αβ = h(u, n)α
νh(u, n)β

µ∇νnµ, (42)

∇u(u, n)nα = h(u, n)α
νuµ∇µnν, (43)

which are such that

∇αnβ =Kn(u, n)αβ + (Θ(u, n)α − Ω(u, n)α)uβ − ∇u(u, n)nβuα

− (a(u) · n)uαuβ + Θ(u, n)nαuβ − (∇u(u, n)nβ + Θ(u, n)β

+Ω(u, n)β + a(u, n)β)nα. (44)

Note that the two fieldsKu(u, n) andKn(u, n) are somewhat candidates to play the role
of second fundamental form. In fact, if we introduce the transverse covariant derivative
∇(u, n) in a way similar to(7) and (8), but withh(u, n) in place ofh(N), similar to(9) we
can write

Ku(u, n)αβ = ∇(u, n)αuβ, (45)

Kn(u, n)αβ = ∇(u, n)αnβ. (46)

These fields are in the general case not symmetric, even if by(29)one immediately has that
their sum

K(u, n)αβ = Ku(u, n)αβ + Kn(u, n)αβ = ∇(u, n)αLβ (47)

is symmetric, as it is proportional to the completely transverse component of∇α�β . More-
over, from(37) and from the symmetry ofK(u, n) one finds thatKu(u, n) andKn(u, n)

are both simultaneously symmetric in the particular case the reference frameu is such that

n · ω(u) = � · ω(u) = 0. (48)

In this case from(37)we moreover, haveKu(u, n)αβ = Θ(u, n)αβ . If condition(48)holds
then the transverse curvature tensor satisfies a complete extension of the Ricci formula to
the transverse 2-space. In the general case, we have in fact the following theorem.
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Theorem 3. LetV (u, n) be a transverse vector(i.e.V (u, n) · u = V (u, n) · n = 0). Then
we have the transverse Ricci formula

2∇(u, n)[β∇(u, n)α]V (u, n)σ

= (RΣ)αβρ
σV (u, n)ρ + 2(ω(u) · n)η(u, n)αβ∇L(u, n)V (u, n)σ , (49)

where∇L(u, n)V (u, n)σ = Lνh(u, n)µσ∇νV (u, n)µ andRΣ is defined by the following
first Gauss–Codazzi identity:

(RΣ)αβρσ =R(u, n)αβρσ + Kn(u, n)βσKn(u, n)αρ − Kn(u, n)ασKn(u, n)βρ

−Ku(u, n)βσKu(u, n)αρ + Ku(u, n)ασKu(u, n)βρ, (50)

whereR(u, n)αβρσ = h(u, n)α
νh(u, n)β

µh(u, n)ρ
λh(u, n)σ

γ Rνµλγ , and where moreover
the following pair of second Gauss–Codazzi identities holds:

h(u, n)α
νh(u, n)β

µh(u, n)σ
γ nρRνµργ

= 2∇(u, n)[βKn(u, n)α]σ + 2(Θ(u, n)[α − Ω(u, n)[α)Ku(u, n)β]σ

+ 2Ku(u, n)[αβ]∇u(u, n)nσ + 2Kn(u, n)[αβ](Θ(u, n)σ+Ω(u, n)σ+a(u, n)σ ),

(51)

and

h(u, n)α
νh(u, n)β

µh(u, n)σ
γ uρRνµργ

= 2∇(u, n)[βKu(u, n)α]σ + 2(Θ(u, n)[α − Ω(u, n)[α)Kn(u, n)β]σ

+ 2Ku(u, n)[αβ]a(u, n)σ − 2Kn(u, n)[αβ](Θ(u, n)σ + Ω(u, n)σ ). (52)

Proof. Consider the following identity:

∇β∇αV (u, n)σ

= ∇β{(h(u, n)αν−uαu
ν + nαn

ν)(h(u, n)σµ−uσuµ+nσnµ)∇νV (u, n)µ}. (53)

The completely transverse component of the left-hand side is given by:h(u, n)β
ν

h(u, n)α
µh(u, n)σλ∇ν∇µV (u, n)λ, while that of the right-hand side turns out to be

∇(u, n)β∇(u, n)αV (u, n)σ + (Ku(u, n)β
σKu(u, n)αµ

−Kn(u, n)β
σKn(u, n)αµ)V (u, n)µ + Kn(u, n)βαn

νh(u, n)σµ∇νV (u, n)µ

−Ku(u, n)βαu
νh(u, n)σµ∇νV (u, n)µ. (54)

Thus, by anti-symmetrization we have(49). As for (57) and (58), they follow rather simply
from the Ricci formula(1) and from(41)–(44). �

In particular, we see thatRΣ (for which, with a slight abuse of notation, we again used the
same symbol of the time-like and space-like case) behaves as a curvature tensor if(48)holds,
at least onΣ . This is a scalar condition on the reference frameu, which is still completely
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arbitrary and operational. Such a condition is satisfied, for example, in the particular case
the time-like congruence associated tou is integrable (i.e.ω(u) = 0), but is more general.
We say that the reference frame is “normal” with respect toΣ if (48)holds onΣ .

Corollary 4. In the hypothesis ofTheorem 3, if the reference frameu is normal, i.e.(48)
holds, then the transverse Ricci formula reduces to

2∇(u, n)[β∇(u, n)α]V (u, n)σ = (RΣ)αβρ
σV (u, n)ρ, (55)

whereRΣ is defined by the following first Gauss–Codazzi identity:

(RΣ)αβρσ =R(u, n)αβρσ + Kn(u, n)βσKn(u, n)αρ − Kn(u, n)ασKn(u, n)βρ

−Θ(u, n)βσΘ(u, n)αρ + Θ(u, n)ασΘ(u, n)βρ. (56)

Furthermore, we have the following pair of second Gauss–Codazzi identities:

h(u, n)α
νh(u, n)β

µh(u, n)σ
γ nρRνµργ

= 2∇(u, n)[βKn(u, n)α]σ + 2(Θ(u, n)[α − Ω(u, n)[α)Θ(u, n)β]σ , (57)

and

h(u, n)α
νh(u, n)β

µh(u, n)σ
γ uρRνµργ

= 2∇(u, n)[βΘ(u, n)α]σ + 2(Θ(u, n)[α − Ω(u, n)[α)Kn(u, n)β]σ . (58)

In the literature null hypersurface Gauss–Codazzi analogues are sometimes introduced by
means of auxiliary screen-distributions (see, e.g.[2,8,11]). If Σ is a null hypersurface with
normal vector� andu a reference frame, the tangent vector spaceTΣ can be represented
in the following way:

TΣ = 〈L, a(u, n), b(u, n)〉, (59)

where we recall thatn = n(u) andL = u+n obviously depend on the choice ofu. However,
representation(59) is formally invariant with respect to the choice ofu. We thus see that a
screen-distribution, i.e. a completion ofTΣ with respect to� (or L), is given by

SΣ = 〈a(u, n), b(u, n)〉. (60)

Clearly, this identifies an observer-dependent, but formally invariant, transverse screen-
distribution; thus the choice of the screen-distribution can be reduced to that of the reference
frame.

It will be interesting to investigate in detail the corresponding relations between our trans-
verse extrinsic curvature, obtained with the transverse-splitting method, and the different
analogous fields obtained in the literature with the screen-distribution method. Moreover,
in principle it is possible to apply the transverse-splitting framework to the study of totally
geodesic degenerate hypersurfaces, as well of umbilical submanifolds of dimension 2 (see,
e.g. [14,15]). However, for reasons of space this study will be eventually included in a
forthcoming paper.
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5. Concluding remarks

We developed a transverse-splitting formalism and obtained a corresponding Gauss–
Codazzi framework for null hypersurfaces. Besides the generality, this method undoubtedly
has the good qualities of being rather simple, to give a sort of physical interpretation (in
terms of reference frames) to the degree of freedom we always meet while handling with
null hypersurfaces, and to completely lie in the framework of tensor algebra and of generic
coordinate charts of the ambient space–time.
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